Fats and oils researchers don't often end up playing themselves in successful Hollywood movies. Meet Don Suddaby. You may already have seen him. He plays himself—a chemist for Croda Universal at Hull, England—in Lorenzo's Oil, an internationally released film about the quest of Augusto and Michaela Odone to aid their son, Lorenzo, after he was stricken in 1984 with ALD (adrenoleukodystrophy).

When Lorenzo Odone was diagnosed with the disease at age 7, his parents were told ALD involved an accumulation of very long-chain saturated fatty acids (VLCSFA) that somehow destroyed the myelin sheath protecting nerve tissue, resulting in loss of motor function and then death within 18 months to two years. That there was no known cure for ALD and no way to halt the deterioration in its victims. What happened next is the plot for Lorenzo's Oil; Suddaby gets involved about midway through.

The Odones decided they had to learn as much about ALD as they could. Their home was five minutes from the National Medical Library in Bethesda, Maryland, and within a few days they had copies of all available medical journal articles on ALD. Through these, they eventually tried to reach William Rizzo, a physician and medical researcher at the Medical College of Virginia, who happened to be conducting experiments involving treatment of skin cell cultures with oleic acid, with some promising results. The Odones asked for some oleic acid oil to feed their son. But Rizzo did not have any oleic oil suitable for human consumption.

Mrs. Odone obtained the names of U.S. oil manufacturing firms from a business directory and began calling them. From that list of 45 to 50 companies, on the first run through, "only one would talk to me," she said in a British television documentary (first broadcast in 1991). "So I began calling the companies that had not returned my (first) call.

"And a very kind researcher in Ohio, a Dr. Russell McIntyre, said 'I have a pint of purely organic oleic acid on my shelf. Would you like it?'"

Russ McIntyre, an AOCS member since 1961, at the time was part of the Capital City Products Co. research staff in Columbus, Ohio. He remembers the call, but says he cannot remember why Capital City had such a pure oleic oil available.

"It was an ester we had made from a commercial source of fatty acids, from food-grade material," McIntyre said.

The research for which the pure oleic oil had been prepared was finished, and so McIntyre offered it to the Odones. AOCS colleagues who know McIntyre won't see much of his personality in the movie. The character created for the part is not portrayed very favorably. An article in The Columbus (Ohio) Dispatch reported that Mrs. Odone said she was "not pleased with the composite character of McIntyre, whom she describes as an 'intelligent scientist and a great humanitarian.'"

The oil from McIntyre's lab was sent to the John F. Kennedy Institute in Baltimore, to Hugo Moser, a physician—described in the television documentary as the world's leading authority on ALD—who was treating Lorenzo.
The Odones wanted to begin feeding trials immediately. Mrs. Odone's sister, Deidre, is a carrier of the ALD gene who had elevated levels of very long chain fatty acids, but who has never shown any symptoms of ALD. She had a blood test before beginning a diet of foods prepared by Augusto Odone, characterized by his wife in the documentary as a "very accomplished chef." The post-feeding blood test showed a dramatic drop in VLCSFA levels. Preparing Lorenzo's foods in the pure oleic oil worked; his VLCSFA levels dropped, eventually by 60%.

Augusto Odone knew that something more had to be done. The VLCSFA levels in Lorenzo had been reduced, but had not returned to normal.

"Then one April (1985) night, I had an idea," he said to the producers of the British documentary. He reasoned that somehow the oleic oil in Lorenzo's diet had interfered with the body's ability to produce very long saturated chain fatty acids, that it had interrupted the elongation process. Perhaps, Odone reasoned, if longer chain unsaturated fatty acids were used, it might further interrupt, or even block, the body's production of very long chain saturated fatty acids.

U.S. fats and oils firms producing edible oils, however, work with raw materials such as soybean, cottonseed and sunflower oils, made up primarily of the C16 to C18 fatty acids.

And here is where Don Suddaby enters the picture, literally and figuratively. Augusto learned that the only long chain edible oil, erucic oil, was still consumed, primarily in Europe. Odone talked with the organization that was then a manufacturer's representative on the U.S. East Coast for Croda.

Suddaby's boss, Keith Coupland, an AOCS member since 1979, remembers receiving a telex (in late 1985 or early 1986) in Hull from Croda's U.S. representative with the specifications—an oil with no saturated fatty acids, consisting virtually entirely of C20:1 and C22:1 fatty acids.
acids—asking whether Croda Universal could produce such an oil.

"We had no idea what it was to be used for, other than for a research project," Coupland said. "We thought about it and answered back 'Yes.'

"We could do it for two primary reasons. First, Croda is one of the world's largest processors of erucic acid. Second, our plants had the technology to produce DHA, EPA at 80% purity and higher—and that's the technology that was needed to produce an oil to Odone's specifications."

Coupland explained the specifications to Suddaby, who was to become a key figure in the project.

"We were all intrigued by the first complex C_{20:1}/C_{22:1} containing lipids, but it was only when we started to dig into the disease/biochemistry that we became fascinated, particularly Don," Coupland said.

Suddaby worked long hours into the night seeking ways to obtain the high-purity oil that would meet the specifications. Coupland notes that Suddaby seems to like working at night. Sixteen-hour days for Suddaby, now 70, became routine.

Starting materials were erucic acid and a process stream rich in eicosenoic acid, Coupland said.

"After the acids were purified to better than 95% by fractional distillation and crystallization, traces of very long chain saturated fatty acids were removed by urea clathration of the corresponding methyl esters. Transesterification with glycerol gave the required triglycerides esters which, after chromatographic refining, gave the final product," Coupland said.

He estimates that the first kilo of Lorenzo's oil, which took approximately six months to produce, probably cost "a few thousand dollars."

Once the Croda researchers learned what the oil was being used for and some other parameters, they devised a more practical production system based on erucic acid. This was derived from HEAR (high-erucic acid rapeseed) oil using essentially the same technology to remove all unwanted fatty acids. Polar contaminants are recovered by chromatography (super-refining). The product is sold under the trade name Crossential GTE. Lorenzo's oil now sells about $200 a kilo, Coupland said. Croda produces the glycerol trierucic (GTE) component; Karlshamns' facility in Janesville, Wisconsin, produces the glycerol trioleate component, which is blended with Croda's GTE at Karlshamn's Columbus, Ohio site. The blended oil is then packaged in Columbus shipped to Scientific Hospital Supply in Gaithersburg, Maryland, which provides the oil to end users. Karlshamns acquired Capital City in 1988.

Croda has secured patents in Europe and Canada; patents are being pursued elsewhere, including in the United States. Parents of ALD children around the world are grateful to the Odones and the Croda researchers. There now is an international organization that is spurring research into how to reverse ALD, now the focus of the Oldones' efforts.

There's a brief scene in the movie in which the actors portraying Coupland and another manager (Barry Hatton) discuss whether Suddaby is working too hard and too long, that he may burn himself out. The script has Coupland noting that if they do tell Suddaby to ease off, they may...
incur the wrath of Mrs. Odone. They decide to let him keep working.

Suddaby portrays himself in the movie. Those scenes were shot during 1992 in a set constructed at Canary Wharf in London. The genuine Croda facilities were too cramped for movie filming, though they do appear in the British television documentary. Coupland’s secretary, Rita Chapman, who accompanied Suddaby on the trip from Hull to London, even appears briefly as a walk-on in one scene of the movie. Coupland has seen the movie and he liked it, even with the changes from reality that were done to enhance the movie’s entertainment value.

Suddaby has been with Croda since 1973. He had obtained a degree in chemistry after serving in the British Navy during World War II. From 1949 until 1973, he worked for pharmaceutical firms. Among his accomplishments was synthesis of a drug to fight tuberculosis, 4-calium benzamidosalicylic acid pentahydrate, that was used worldwide. In 1957 he was named a Fellow of the Royal Institute of Chemistry. He became a director of S&N Research Ltd. in 1960 and was named managing director in 1967. After taking early retirement to pursue a farming lifestyle, Suddaby re-entered the chemistry lab in 1973 accepting a position at Croda as an analytical chemist. After an accident that resulted in a broken hip, he began working full-time in research and development, initially on determining concentration levels of EPA and DHA in fish oils. His work in that area had just been completed when Croda received Augusto Odone’s request.
When that first kilo of oil was shipped to the Odones during the latter half of 1986 and put into Lorenzo's diet, the results were dramatic. The progression of the disease was halted. The Odones believe they have seen some improvement in their son's condition.

The movie *Lorenzo's Oil* was released in New York City and Los Angeles in mid-December 1992 because the producers wanted Susan Sarandon's performance as Mrs. Odone to be eligible for this year's Academy Award presentations; it began showing a month later at theaters around the United States. A special London premier sponsored by Croda was scheduled during February as a fund-raiser for a myelin research project with Suddaby as the guest of honor.

For the U.S. opening, Coupland was flown to New York from Hull in early January on a publicity blitz. During a one-week visit he appeared on several television/radio talk shows and was interviewed by numerous print media journalists.

The knowledge gained from the development of Lorenzo's oil has implications for other diseases, including adrenomyeloneuropathy (AMN), Coupland said. He particularly cited a research team at the University in Stirling, headed by John Sergeant with Robert Wilson as the key investigator in studies regarding the phospholipid content of the white matter of human brain. Two papers resulting from that work were published in the January 1993 issue of *Lipids*, virtually coinciding with the nationwide release of *Lorenzo's Oil* in the United States.

Don Suddaby liked the clips he saw of the movie—after all, the person portraying him was very realistic. He was scheduled to see the full movie for the first time at the London premier. *The Sunday Times* of Feb. 7, 1993, published an article on Suddaby. Declining health and eyesight have restricted the 70-year-old's activities, but not his modesty. The newspaper article noted that Suddaby's neighbors were amazed when they discovered the role he had played in developing Lorenzo's oil and that he was portraying himself in the movie.

Now if there were an Oscar for best performance by an oil chemist in a supporting role . . .
Oilseeds in Latvia—what lies ahead?

In January 1992 I flew out of a sunny Dallas, Texas, to land many hours later at a fog-enshrouded Riga, Latvia, to work as free Latvia’s first Senior Fulbright Scholar.

Although I went on this congressionally funded program planning to work primarily as a lecturer/scholar, I quickly found myself becoming involved in other aspects of this fledgling country’s young life. This broad-based experience was especially meaningful to me since my parents had fled Latvia in 1944, and I had the opportunity of growing up in the United States and yet getting to hear about pre-World War II Latvia from my parents, who had made sure that as I was growing up that I became fluent in the Latvian language. I was particularly interested in seeing how my perceptions of the country, based on my parents’ descriptions, matched the reality after 50 years of Communism.

Initially, my lectures were hosted by physicians, medical students and health educators; however, I was also invited to speak to students and faculty at the Latvia Agricultural University in Jelgava, Latvia. Students and faculty asked many questions about possible U.S. interests in the “agriculture business” development of Latvia. When these questions started focusing on oilseed processing, I felt fortunate to have brought along a copy of Peter Wan’s book on fats and oils processing (Introduction to Fats and Oils Technology, AOCS, Champaign, Illinois, 1990) which I proceeded to circulate widely. As people read the book, the number of their questions increased. Subsequently I was invited to tour Latvia’s only oilseed processing plant—in Liepaja.

This oilseed processing plant, the only one on the eastern shore of the Baltic Sea, was built in the 1880s by a Danish firm. Liepaja was chosen as...
the plant’s location because of its direct rail contacts into both Russia and the Ukraine, and the fact that the harbor does not freeze during the winter months. Also, it did not hurt that Liepaja was a very beautiful city back in those early times and was well situated in Latvia with respect to the nation’s agricultural wealth. Before World War II, Latvia economically was competitive with Denmark and was known throughout Europe for agricultural products, especially its butter. Unfortunately, Liepaja is no longer as attractive as it was back then. Its harbor is shaped like a “Y” in which one arm of the “Y” is considerably deeper than the other. The deeper arm is still being used by Russian navy forces that were supposed to withdraw from Latvia over a year ago; however, they have not withdrawn and now are adding injury to insult by also destroying the environment. One can see ships sinking in the port and garbage being dumped both on land and in the water. Although the shorter branch of the harbor is shallower, it does not contain an active Russian naval force and seems to be in better shape environmentally. It is along this branch of the harbor that the oilseed processing plant is situated.

The plant is brick and sits on approximately 15 acres of land. Presently, half of this land is unused and is available for the construction of new buildings. Thirty-year-old oilseed pressing and extracting equipment is in the 100-year-old structure. Plant capacity is 150 tons per day, or 50,000 tons per year. Latvia’s present agricultural secretary hopes to double production over the next few years. Unfortunately, the plant is operating significantly below capacity because of the difficulty in obtaining extraction solvents. The staff consists of approximately 200 older employees (mostly women) who work for what would be considered very low wages in western economies.

Historically, the plant has processed all types of oil-bearing materials including: coconut, linseed, sunflowerseed, rapeseed, sesame seed and even groundnut and coffee.

During the past year, 50 tons of rapeseed and 150 tons of linseed were processed in the plant. Latvia hopes to increase its production of both of these oilseeds and their by-products. To accomplish this, the country recently acquired 1,000 tons of summer rapeseed (Kristina variety) from Sweden on a “payback basis”—one ton of rapeseed will be returned to Sweden from every hectare of land planted. This new seed has been planted on about 3,000 hectares; it is expected that the harvest will be about 1.5 tons per hectare. In Sweden, yields are 2.5 tons per hectare; however, growing and harvesting technology in Latvia is substandard and this results in lower yields. Farmers are not as excited about this national push into rapeseed as one might expect, because they were asked to plant rapeseed about eight years ago with disastrous consequences (about half of the crop rotted in the fields). The present crop, however, should be successful since the country desperately needs the oil and Kristina rapeseed contains only 0.1% erucic acid.

Although 8,000 hectares of flax were planted recently in Latvia, linseed processing is almost at a standstill because the linen fiber produced is of relatively poor quality (a problem with the processing, not the flax itself) and does not sell well on western European markets. Presently, the Latvians cannot afford to buy their own linens since most of their income is needed to buy food.

Latvia does have a progressive linseed association that is actively involved in purchasing high-grade linseed from Canadian sources and in seeing that this seed is planted around Latvia. Canadians not only are working actively with Latvians on flax production, but are also providing lines of
credit to enable Latvia to buy soybeans that can be processed in the Liepaja plant.

Additionally, when Latvia processes seeds, most of the products are not used effectively by the Latvians: both oil and meal by-products are exported for further processing in other countries. Seed by-products also are used as animal feed, whereas they should be used for the local production of vitally needed products.

The long-term role for the port of Liepaja in Latvia's agricultural future is very bright. Unfortunately, the oilseed facility is presently just “hanging on.” During the spring 1992 season, the plant was working on a day-to-day basis and did not seem to have any real business plan or marketing program. Clearly, the old system had failed, but the staff members did not seem to know which way to move to improve for the future. Today, Latvia is in desperate need of vegetable oil for production of margarine, paint, perfume, confections, etc. It also could make use of oilseed by-products for the manufacture of infant formulas, etc.

There are still memories held by many Latvians of what once was 50 years ago, before Communism. These memories, combined with Latvia's highly educated population and fertile land, as well as its central geographic location, should work well to push Latvia into a successful 21st century. Western technology and training in the field of business, however, are badly needed by this struggling democracy if it is to become self-sufficient and a contributing member of our global economy.

(A meeting for all persons interested in the oilseeds and fats and oils industries in Russia, the Baltic states and neighboring countries will be held from 5–6 p.m. on Tuesday, April 27, in the Redonda Room of the Anaheim Hilton Hotel as part of the AOCS Annual Meeting and Exposition held jointly with JOCS in Anaheim, California.)

Our client is a leading U.S. merchant trading company, specializing in the conceptual selling of plastic bottle equipment to foreign markets.

Processors of edible cooking oil around the world are recognizing the advantages of in-house plastic bottle manufacturing. To better exploit this rapidly growing trend, the company seeks to further expand its distributor network in Latin America, Asia, the Middle East and Africa.

Foreign Distributors Wanted

PET Plastic Bottle Machinery for Edible Cooking Oil

We are looking for an entrepreneurial salesman/service technician team with a sound knowledge of oilseeds processing machinery and a well-established customer base in the industry.

A general understanding of plastics processing is a plus but not a necessity; in-depth training in PET (polyethylene terephthalate) 1 ltr./32 fl. oz. bottle technology will be provided. It is more important that applicants have an intuitive skill for system engineering and enjoy the marketing of value-added support equipment.

Distributors will act in part as tutors to edible cooking oil processors new to PET bottle technology. They will promote the concepts and features of PET ancillary equipment covering process water chilling systems, plastic mould dehumidification, resin conveying systems, resin dehumidifying dryers, high-pressure oil-free air compressors, pre-consumer recycling, and laboratory testing apparatuses. In addition, they will advise customers on the overall economic benefits of turn-key PET bottle manufacturing.

Company/personal profiles should be addressed to Mr. Stanley Rogers, Technology & Trade, Inc., 1559 North LaSalle Street, Suite 1800, Chicago, Illinois, 60610, USA. Fax 312.943.1634; Tel: 312.266.7414. For information circle #206
Hydrogenated products under fire in New York

The New York State Consumer Protection Board has urged the U.S. Food and Drug Administration (FDA) to bar the use of the terms "natural" and "all natural" for products containing hydrogenated oil, according to a report in the Jan. 7, 1993, issue of Food Chemical News.

In a letter to FDA Commissioner David Kessler, the board said it was reviewing whether snack food manufacturers were labeling products as all natural "when in actuality an ingredient has been subject to the chemical process of hydrogenation," which the board said was a process that does not occur naturally. Details: Food Chemical News, Jan. 7, 1993, pp. 25-26.

Best Foods opens new technical center

Best Foods, a division of CPC International, has opened a new technical center in Franklin Township, New Jersey.

Best Foods employees moved from a Union, New Jersey, facility to the center during the last week of January. The new facility now houses Best Foods' research and development, engineering services, packaging development and quality assurance operations, which employ approximately 200 persons.

Fred Kurasiewicz is director of the new 133,000 square-foot facility, which includes a two-story administration wing, one-story sensory evaluation wing, two-story lab wing and one-story high-bay process laboratory and pilot plant.

Best Foods built the new center because it had outgrown the Union facility. The old center, which is owned by CPC, is for sale.

Fat-free potato chips now on the market

A Louisville, Kentucky, firm is selling Louise's Fat-Free Potato Chips in Atlanta, Georgia, with plans for national distribution, according to Supermarket News.

Conventional potato chips contain approximately 35-40% oil, but the fat-free chips contain less than 1 gram of fat per 1-ounce serving, company officials reported. To make the product, sliced potatoes are dried and then cooked in microwave ovens. Flavoring and seasoning then are added.

The article noted that the firm's name, Atgtbt, is an acronym for "Almost Too Good To Be True."

Tetra Laval announces two margarine plants

Tetra Laval Fats and Oils AB of Tumba, Sweden, has announced it has received contracts to supply new margarine plants in Malaysia and in Germany.

The Malaysian plant will be built in Pasir Gudang for the Malaysian Federal Land Development Authority (FELDA). Tetra Laval will be responsible for delivery of equipment and commissioning of the plant. Estimated value of the contract was given as 2.5 million ringgits (approximately $1 million).

The German facility will be built at Dresdner Margarinwerk in Dresden, Germany. The Dresden firm recently was purchased by Vandermeorte, a Belgian-based fats and oils international concern. Tetra Laval will be responsible for planning, delivery of equipment, construction and commissioning of the plant. Estimated value of the contract was given as 3 million deutschmarks (approximately $1.9 million).
Tetra Laval to broaden service

The move follows a major merger between Tetra Pak, the liquid packaging group, and Alfa-Laval, a food processing and industrial company.

Tetra Laval Fats and Oils has been organized under Tetra Laval Food, one of four newly formed industrial groups.

The new organization "will encourage a more intensive focus on customers in the fatty oils industry. The ambition is to combine Alfa-Laval's years of experience in processing technology with the packaging know-how of Tetra Pak," a news release from Tetra Laval said.

Cargill acquires French oil bottler

Cargill France has acquired French vegetable oil refiner and bottler Huilerie Felix Marchand S.A. with plans to add a new state-of-the-art refinery.

The Felix Marchand refining and bottling plant is located in Chateau Gontier, approximately 150 kilometers north of Saint-Nazaire in western France. It refines or bottles 70,000 metric tons of sunflowerseed, rapeseed, soybean, peanut and other (grape, corn, palm) oils annually for the French bottled cooking and salad oil market.

The bottled oil is marketed in France under the Amphora brand and under retailers' private labels.

"Huilerie Marchand is a logical addition to our French oilseed crushing operations in Saint-Nazaire and refining activities in Europe. The Felix Marchand facility, to which we will add a state-of-the-art refinery, will enable us to serve the French bottled oil retail market as an extension of our traditional oilseed crushing activities," according to Francois Loury, president-director-general of Cargill France.

Spain to control sunflower acreage

The Spanish government has moved to discourage farmers from planting surplus acreage to sunflowers, with no intention of harvesting them, in order to collect subsidies under the new European Community's farm plan.

That plan bases support payments solely on acreage planted; Spanish farmers reportedly were planting marginal cropland in sunflower to collect the support payments, then not tending the crop.

The new rules will prohibit planting of crops on land traditionally left fallow during regular crop rotation plans. Such lands account for about 3 million hectares (approximately 7.5 million acres) annually, the report said.

As a result, U.S. Department of Agriculture observers in Spain have reduced their estimate of 1993 Spanish sunflower acreage to 2 million hectares from the previous estimate of 2.5 million hectares. The official Spanish government estimate is 1.7 million hectares.

Japanese announce improved soybean

A new Japanese soybean variety, Kyushu No. 111, has been developed without a lipoxygenase enzyme believed responsible for beany flavor in soy products.

Kyushu Agricultural Laboratory of the Ministry of Agriculture, Forestry and Foods reportedly developed the variety in the fourth generation of crossbreeding two soybean varieties with reduced lipoxygenase.

New technology for EPA, DHA

Two Japanese firms have combined to develop a new technology for recovering ω-3 fatty acids such as eicosapentaenoic acid (EPA) and docosahexaenoic acids (DHA).

Asahi Denkka Kogyo Co. and Nitto Electric Co. developed the technology. The new system involves enzyme treatment, solvent extraction and membrane separation to recover the materials as glycerides. The process is being studied for potential commercialization.

Japanese food firms cutting product lines

Three Japanese food firms have announced plans to reduce the number of products they manufacture in response to a downturn in the Japanese economy.

Kikkoman Co., which was marketing about 5,000 different products in mid-1991, has announced plans to cut back to 1,500 products during 1993. Most reductions are expected to be in Kikkoman's line of wines as well as foods for institutional use.

Q.P. Corporation has said it will reduce its product offerings by 20% to 3,500 during the next two years. Three years ago the firm offered approximately 9,600 different items.

Morinaga Confectionery Co. said it has cut the number of different ice cream products it offers to 80 from 100 and intends to review its product line every six months.

Vietnam studied for oil palm growth

Malaysian palm oil specialists have been surveying potential sites of oil palm cultivation in Vietnam, according to a report from U.S. Department of Agriculture observers in Malaysia.

Per capita annual oil consumption in Vietnam is about 4 kilograms, the
report said, and thus the nation is viewed as a major potential market for palm oil. Golden Hope Plantations of Malaysia, which has a joint venture to refine palm oil in Vietnam, has been approached to cultivate 10,000 hectares (about 25,000 acres) with oil palm.

A team from the Palm Oil Research Institute of Malaysia, which has been conducting the survey of potential plantation sites, also has been looking for opportunities for joint ventures in Vietnam.

Phosphatidylcholine process announced

Q.P. Corporation of Japan has announced development of an industrial technology that can separate phosphatidylcholine, at nearly 100% purity, from egg yolk.

The technology involves use of HPLC (high-performance liquid chromatography) separation and is said to yield a product with good oxidative stability. The product is expected to be used in foods, drugs and cosmetics.

Pfizer renames unit, adds low-fat product

Pfizer Specialty Chemicals Group, a food ingredients supplier, has been renamed the Pfizer Food Science Group.

The business unit, one of five operating units of Pfizer Inc., has introduced a fat-reducing agent. The product is a natural protein component of milk developed in collaboration with Ault Foods Ltd. of Canada for use in ice cream and frozen dairy desserts. It will be sold under the name Dairy-Lo.

Under an agreement with Ault, Pfizer will market Dairy-Lo outside Canada, where Ault’s low-fat ice cream has captured 4% of the frozen dessert market since its launch a year ago.

Also, group president Donald F. Farley said Pfizer’s central research group and the Food Science Group’s commercial development team are working with tabletop and margarine manufacturers on vegetable oil thickeners. Farley said commercial prototypes are being test-marketed as a prelude to product launch later this year.

Names in the News

Calvin K. Shields has retired after 34 years with Central Soya Co. Inc. He most recently served as director of strategic development for the firm.

AOCS member Edward A. Sedor has joined SpecialtyChem Products Corporation in Marinette, Wisconsin, as vice-president for process development. He previously was director of total quality and associate R&D director with Sherex Co. in Dublin, Ohio. Sedor has more than 25 years experience in the chemical industry.

Gerald F. Smith of Valley Products has been elected chairperson of the National Renderers Association’s board of directors for 1992–1993.
William W. Riley Jr. has been named research coordinator for the Canola Council of Canada. Riley joined the staff Feb. 1, succeeding Kelley Fitzpatrick who accepted a position during 1992 with a seed company in Canada.

Business briefs

Krupp Maschinenetechnik GmbH of Hamburg, Germany, has announced the first sale of four full-size industrial high-pressure membrane presses, for filtration pressures of up to 50 bar, to a Singapore firm for processing palm oil stearin into cocoa butter substitutes, cocoa butter replacers and, through blending with other fats, cocoa butter equivalents.

Halls America Inc. of Piscataway, New Jersey, has announced the appointment of Peter Purwien as executive vice-president, responsible for corporate development and strategy.

Praxair Inc. has elected two new members to its board of directors: Dale F. Frey, vice-president at General Electric, and Alejandro Achaval, vice-chairperson and chief executive officer of IPAKO Industrias Petroquimicas Argentinas S.A.

Renato Picco has been named chairman and chief executive officer of Eridania Beghin-Say succeeding Jean-Marc Vernes. Vernes, who was named honorary chairman of the company, will remain on the board of directors. Also, Jean-Martin Folz has been reconfirmed as managing director. Eridania Beghin-Say heads the Ferruzzi Group’s food and agro-industrial activities.

Warner-Lambert Co. has purchased the remaining shares of its confectionery products joint venture with Societa Meridionale Finanziara S.p.A. of Italy.

Obituary

D. P. Smith

Donald Paul Smith, founder and chairman of Enersyst Development Center Inc. in Dallas, Texas, died Dec. 27, 1992, at the age of 74.

Mr. Smith received his bachelor's degree in agricultural chemistry, with a supplement in chemical engineering, in 1940 from Purdue University. He later did graduate work at Washington University and Ohio State University. Mr. Smith was a food scientist, inventor and entrepreneur who held more than 40 patents.

Before founding Enersyst in 1968, Mr. Smith had worked for Litton Industries Inc., St. Regis Paper Co., Barker Equipment Co., Milprint Inc., and Ralston Purina. During World War II he served as a research associate at Northwestern University and at the Massachusetts Institute of Technology where he worked on protective materials in chemical, bacteriological and radiological warfare.

Enersyst Inc. specializes in development, design and building of specialized food service, baking, cooling and other food processing equipment.

In 1987, Mr. Smith was named the Texas Outstanding Inventor by the Texas Bar Association's Intellectual Property Section.

Survivors include his wife, Esther, three daughters, his father, two sisters, two brothers and seven grandchildren.

VAREX CORP., 4000 BLACKBURN LANE BURTONSVILLE MD 20866 PHONE: (301) 421-1616 FAX: (301) 421-1882

For information circle #157